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Abstract: Purpose: End-tidal CO2 (eTCO2) can be used to estimate the arterial CO2 (PaCO2) under steady-state condi-
tions, but that relationship deteriorates during hemodynamic or respiratory instability. We developed a multivariate 
method to improve our ability to estimate the PaCO2, by using additional information contained in the volumetric 
capnograph (Vcap) waveform. We tested this approach using data from a porcine model of chest trauma/hemor-
rhage. Methods: This experiment consisted of 3 stages: pre-injury, injury/resuscitation, and post-injury. In stage 
I, anesthetized pigs (n=26) underwent ventilator maneuvers (tidal volume and respiratory rate) to induce hypo-or 
hyper-ventilation. In stage II, pigs underwent either (A) unilateral pulmonary contusion, hemorrhage, and resuscita-
tion (n=13); or (B) bilateral pulmonary contusion (n=13) followed by 30 min of monitoring. In stage III, the ventila-
tor maneuvers were repeated. The following Vcap features were measured: eTCO2, phase 2 slope (p2m), phase 3 
slope (p3m), and inter-breath interval. The data were fit to 2 models: (1) multivariate linear regression and (2) a 
machine-learning model (M5P). Results: 1750 10-breath sets were analyzed. Univariate models employing eTCO2 
alone were adequate during stages I and III. During stage II, mean error for the linear model was -8.44 mmHg 
(R2=0.14, P<0.001) and for M5P it was -5.98 mmHg (R2=0.13, P<0.01). By adding Vcap features, all models exhib-
ited improvement. In stage II, the mean error of the linear model improved to -4.64 mmHg (R2=0.11, P<0.01), and 
that of the M5P model improved to -1.62 mmHg (R2=0.25, P<0.01). Conclusions: By incorporating Vcap waveform 
features, multivariate methods modestly improved PaCO2 estimation, especially during periods of hemodynamic 
and respiratory instability. Further work would be needed to produce a clinically useful CO2 monitoring system under 
these challenging conditions.

Keywords: End-tidal carbon dioxide, arterial carbon dioxide, capnography, pulmonary contusion, hemorrhage, ma-
chine learning

Introduction

Capnography is the measurement and display 
of the partial pressure of carbon dioxide in the 
exhaled breath. Capnographic monitoring is 
increasingly recognized as an important tool in 
critical care and emergency medicine, because 
it helps achieve the 4 immediate priorities of 
resuscitation: airway, breathing, circulation, 
and disability [1]. For airway management, it 
confirms endotracheal tube placement and 
alerts the provider if the tube becomes dis-
lodged. For breathing management, end-tidal 
carbon dioxide (eTCO2), under hemodynamical-
ly stable conditions, correlates with arterial car-
bon dioxide (PaCO2) and provides a non-inva-

sive estimate of ventilation adequacy. For circu-
lation management, onset of cardiac arrest and 
hemorrhagic shock are quickly reflected in 
decreases in eTCO2 [2]. Conversely, eTCO2 rises 
during adequate chest compressions [3]. For 
disability management, capnography is indicat-
ed for the treatment of intubated patients with 
head injury, since cerebral blood flow is adverse-
ly affected by hypocapnia [4]. Because of these 
and similar considerations, capnography is rec-
ommended by the American Society of 
Anesthesiologists [5], the Advanced Trauma 
Life Support course [6] the Advanced 
Cardiovascular Life Support course [3], and the 
Brain Trauma Foundation’s prehospital guide-
lines [7].
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In several of the above applications, a close 
relationship between the eTCO2 and PaCO2 is 
assumed. However, rapidly changing hemody-
namic or respiratory conditions alter the rela-
tionship between eTCO2 and PaCO2. For exam-
ple, an increase in alveolar dead space due to 
deterioration of pulmonary function increases 
the divergence between eTCO2 and PaCO2. In 
patients with healthy lungs, this divergence is 
small, justifying the use of eTCO2 as a surrogate 
for PaCO2. In patients with diseased lungs, the 
baseline eTCO2-to-PaCO2 difference must be 
measured, allowing subsequent estimates of 
the PaCO2 to be more accurately estimated [8]. 
But if the dead space changes with worsening 
(or improving) disease, then eTCO2 becomes 
less reliable as a PaCO2 surrogate.Decreased 
perfusion of the lung, e.g. in cardiogenic shock 
or hemorrhagic shock, also increases the 
eTCO2-to-PaCO2 difference and interferes with 
the utility of the eTCO2 as a surrogate for PaCO2 
[9].

In a porcine model of chest trauma and hemor-
rhage, we recently confirmed the close correla-
tion between eTCO2 and PaCO2 across a wide 
range of minute-ventilation levels, both before 
injury and after resuscitation. However, the 
eTCO2-to-PaCO2 relationship deteriorated sig-
nificantly immediately after injury and during 
hemorrhagic shock [10]. 

Because of these limitations and in order to 
improve our ability to predict PaCO2 in unstable 
patients, we reexamined the information con-
tent of the exhaled CO2 waveform. We employed 
the volumetric capnograph (Vcap), which is the 
result of plotting the exhaled CO2 against the 
exhaled breath volume on a breath-by-breath 
basis. This differs from the usual capnograph, 
in which exhaled CO2 is displayed as a function 
of time. Certain features of the Vcap waveform 
correlate with ventilation-perfusion (V/Q) dis-
persion, a global index of V/Q mismatch [11]. 
Previously, a multivariate approach was applied 
to data obtained from Vcap waveform features, 
to predict the presence of pulmonary embolism 
[12]. The purpose of the current study was to 
develop and evaluate an improved algorithm 
for estimating PaCO2 using readily available 
features of the volumetric capnograph. We 
hypothesized that multivariate assessment of 
these features could improve our ability to esti-
mate PaCO2 noninvasively, despite rapidly 
changing pulmonary and hemodynamic con- 
ditions.

Materials and methods

This study was approved by the U.S. Army 
Institute of Surgical Research, Institutional 
Animal Care and Use Committee. It was con-
ducted in compliance with the Animal Welfare 
Act and the implementing Animal Welfare 
Regulations and in accordance with the princi-
ples of the Guide for the Care and Use of 
Laboratory Animals. 

Animal preparation 

This study consisted of analysis of data from 
previously reported animal experiments [10]. 
Briefly, 26 female Yorkshire pigs (Midwest 
Research Swine, Gibbon, MN) weighing 30 to 
45 kg were fasted overnight and premedicated 
with glycopyrolate. Inhaled isoflurane (0.5-3.0 
vol%) was used to induce anesthesia. Animals 
were intubated, and midazolam (25 mg/h), ket-
amine (250 μg/kg/min), and propofol (150 μg/
kg/min) were administered for total intrave-
nous anesthesia (TIVA). A tracheostomy was 
performed. The femoral arteries, femoral veins, 
and right external jugular vein were catheter-
ized. The animals were then placed in the ster-
nal recumbent position. They were mechani-
cally ventilated using a Dräger EVITA XL ventila-
tor (Dräger Medical, Telford, Pa), initially with a 
tidal volume (TV) of 10 mL/kg and a respiratory 
rate (RR) of 12 breaths/min. The fraction of 
inspired oxygen (FiO2) and the positive end-
expiratory pressure were set to 21% and 5 
mmHg, respectively. A mainstream Vcap moni-
tor (CO2SMO; Philips Respironics, Amsterdam, 
Netherlands) was connected to the endotra-
cheal tube. A pulse oximeter (Oxisensor II 1-20: 
Covidien; Nellcor, Mansfield, Mass) was placed 
on the tail to measure peripheral saturation of 
oxygen (SpO2). Blood gases were measured 
using a point-of-care device (iSTAT, Abbott 
Laboratories, Abbott Park, IL). The FiO2 of the 
ventilator was adjusted to maintain a minimum 
SpO2 of 90%.

Experimental protocol 

Both experiments consisted of 3 stages. On 
day 1, the animals were surgically prepared as 
described above, and underwent a sequence of 
respiratory maneuvers (stage I; see below). The 
animals were then rested overnight in the ani-
mal ICU. The next day, they were placed in the 
dorsal recumbent position and underwent 
stage II. This consisted of either unilateral 
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(right-sided) (Group A, n=13) or bilateral pulmo-
nary contusions (Group B, n=13) [13]. Those 
animals in Group A then underwent hemor-
rhage (12 mL/kg over 10 min), a shock period 
of 30 min, and rapid resuscitation with lactated 
Ringer’s (3 times the shed volume) and shed 
blood. No respiratory maneuvers were per-
formed during stage II. After resuscitation, the 
animals were returned to the sternal recum-
bent position and the same respiratory maneu-
vers as in stage I were performed again (stage 
III). Upon completion of stage III, the animals 
were euthanized with high-dose sodium pento-
barbital solution (Fatal-Plus, Dearborn, MI).

For the respiratory maneuvers in stages I and 
III, a sequence of ventilator changes were per-
formed by varying the RR or TV to induce 
hypoventilation or hyperventilation. After base-
line measurements, each animal was random-
ized into 1 of 4 groups to determine the 
sequence by which the respiratory maneuvers 
would be done. Before respiratory maneuvers 
and after ensuring adequate analgesia, ani-
mals were administered a vecuronium bolus (1 
mg/kg) to ensure the absence of spontaneous 
respiration. Blood gas analysis was performed 
at 5 and 7 min after each respiratory maneu-
ver; PaCO2 values were recorded and the 
results were averaged. 

Capnographic analysis 

Ventilator settings and continuous capnogra-
phy waveforms were recorded from the CO2SMO 
device to a computer by custom-built software, 
the Integrated Data Exchange and Archival 
(IDEA) system. 

A Java-based computer program was written to 
analyze the ventilator waveforms and to seg-
ment each breath. The Vcap curves were 
obtained by plotting the partial pressure of CO2 
as a function of the volume of exhaled breath. 
The curves were then parameterized as 
described previously by Fletcher [14, 15]. The 
Vcap curve is characterized by three phases 
(Figure 1). Phase 1 is an initial flat phase, low in 
CO2, which corresponds to exhalation of air 
from the anatomical dead space that has not 
undergone gas exchange at the alveoli. Phase 2 
is characterized by a rapid rise in CO2 due to 
mixing of air from the dead space and the alve-
oli. Phase 3 is consists of alveolar gas and is 
characterized by a plateau, with a slight incline, 
that terminates in the CO2 partial pressure rec-
ognized as eTCO2. 

Slopes and intercepts for each phase were 
determined and named as follows: phase 2 
slope (p2m), phase 2 intercept (p2i), phase 3 
slope (p3m), phase 3 intercept (p3i). In addi-
tion, standard ventilator settings were recorded 

Figure 1. Example of Vcap waveform. Blue line: 
phase 2 slope (p2m), phase 2 intercept (p2i), Green 
line: phase 3 slope (p3m), phase 3 intercept (p3i), 
Black line: Airway Dead Space (in mL). 

Figure 2. Composite Vcap curve consisting of ten 
overlaid breaths. 
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including respiratory rate, tidal volume, minute 
volume, FiO2, and I:E ratio. The inter-breath 
interval, IBI, was defined as the time between 
the start of consecutive breaths measured in 
seconds. Breath-by-breath Vcap and flow 
curves were generated by the software and 
exported as JPEG files for manual review, i.e. to 
identify artifacts and to assess segmentation 
quality. For each time point, the last 10 consec-
utive artifact-free breaths for each ventilator 
setting were identified and the Vcap parame-
ters calculated and averaged. A composite cap-
nograph overlay image was created to display 
these last 10 breaths superimposed on each 
other (Figure 2). The IBIs of the 10 breaths at 
each of the ventilator settings were manually 
reviewed for each time point and for each ani-
mal. Any breaths deviating from the respiratory 
rate set by the ventilator by > ± 0.02 seconds 
were automatically excluded. If marked variabil-
ity was present for at least 4 of the 10 breaths, 
the time point was discarded. 

The following software-derived Vcap variables 
were used in multivariate analysis to derive 
estimates of PaCO2: eTCO2, IBI, p2m, p2i, p3m, 
p3i, and anatomical dead space. It was deter-
mined through model testing that p2i, p3i, and 
anatomical dead space did not contribute sig-
nificantly, and these were subsequently 
dropped from the models. We evaluated 2 
models: a standard multivariate linear model 
and M5P, a well-known machine-learning 
model. Each of these 2 models encompassed 
all 3 stages of the experiment; that is, the 2 
models were developed using data from all 3 
stages, and then were applied to the individual 
stages. 

The M5P model is a regression-tree model [16-
18] and is implemented as a part of Weka [19]. 
It combines an automated classifier which cre-

ates clusters of similar data elements together 
with an independent least-squares fit for each 
set of values in the cluster. In our case, the 
leaves of this tree represent a linear regression 
of closely related clusters of PaCO2 test results. 
The segmentation of clusters was determined 
automatically by the data heuristics using the 
M5P algorithm. The resulting model had the 
advantage of being both transparent to the 
observer as well as providing an efficient and 
classical mechanism for prediction through the 
linear regression component. The resulting 
model is piecewise linear. 

Statistical analysis 

Analysis was performed using R Version 3.02 
and the RWeka package [20, 21]. All results are 
expressed as correlations or means ± SD.

Results

We analyzed a total of 1750 10-breath sets. 
Results of fitting the data to the 2 models are 
shown in Table 1. Bland-Altman analysis of the 
overall data is shown in Figure 3A-D. The follow-
ing equations describe the results of linear 
regression:

Linear Regression: PaCO2=0.8933 * eTCO2+ 
6.2825;

Multiple Linear Regression: PaCO2=0.6307 * 
eTCO2+9.7282 * p2m+3.0249 * p3m+1.4702 
* IBI+6.6849. 

M5P models for single and multiple variables 
are provided in the supplemental digital con-
tent. Using eTCO2 alone, PaCO2 could be accu-
rately estimated in uninjured animals (stage I) 
with a mean error of 2.91 mmHg (R2=0.96, 
P<0.001) in the linear model, or of 3.65 mmHg 
(R2=0.95, P<0.001) in the M5P model. After 

Table 1. Summary of the results

Features Model

Stage I Stage II Stage III Overall
N=867 N=75 N=808 N=1750

R2 Bias  
(Mean ± SD) R2 Bias  

(Mean ± SD) R2
Bias

R2 Bias  
(Mean ± SD)(Mean ± SD)

eTCO2 Linear 0.96# 2.91±3.87 0.14# -8.44±6.45 0.81# -5.47±7.97 0.83# -1.45±7.59

eTCO2 M5P 0.95# 3.65±4.10 0.13* -5.98±6.17 0.83# -3.43±7.46 0..84# -0.03±7.01

eTCO2, IBI, p2m, p3m Linear 0.96# -3.97±3.92 0.11* -4.64±5.83 0.80# -2.82±7.93 0.85# 0.00±6.94

eTCO2, IBI, p2m, p3m M5P 0.96# 1.89±3.84 0.25# -1.62±5.06 0.86# -1.92±6.71 0.90# -0.01±5.73
#P<0.001; *P<0.01.
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Figure 3. Bland-Altman analysis. A: eTCO2-based linear regression model; B: eTCO2-based M5P model; C: Vcap-based linear regression model; D: Vcap-based M5P 
model. X axes represent the average of PaCO2 and PESTCO2. 
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resuscitation (stage III), the mean error for the 
linear model was -5.47 mmHg (R2=0.81, 
P<0.001) and for the M5P model -3.43 mmHg 
(R2=0.83). As expected, the relationship dete-
riorated considerably during the injury/resusci-
tation stage (stage II), with the mean error for 
the linear model of -8.44 mmHg (R2=0.14, 
P<0.001) and for M5P of -5.98 mmHg (R2=0.13, 
P<0.01). 

By using the additional features of the Vcap 
curve, all models exhibited improvement in 
estimation with decreases in the mean error 
and increases in correlation. Most notable was 
the improvement in stage II, in which the mean 
error of the linear model improved to -4.64 mm 
Hg (R2=0.11, P<0.01), and that of the M5P 
model improved to -1.62 mm Hg (R2=0.25, 
P<0.01). For stages I and III, slight improve-
ments in the average error and correlation were 
also noted (Table 1). 

Discussion

The principal finding of this study is that multi-
variate analysis of the Vcap waveform improved 
our ability to estimate PaCO2 during unstable 
conditions in a porcine model of chest trauma 
and resuscitation, compared with the eTCO2 
alone. Having an accurate assessment of 
PaCO2 is important in clinical practice, as it 
could reduce the need for invasive blood gas 
sampling to verify adequacy of ventilation. This 
capability is needed for any intubated patient, 
but is especially important for maintaining nor-
moventilation in patients with traumatic brain 
injury [4, 22]. 

Previously, we showed that end-tidal capnogra-
phy provides an accurate estimate of PaCO2 
under stable hemodynamic and respiratory 
conditions, but fails during unstable conditions 
[10, 23]. Several techniques have been 
described in an effort to improve the non-inva-
sive PaCO2 estimate. One of them, described by 
Fletcher [24], involves halving the ventilator 
respiratory rate and doubling the tidal volume 
while keeping the inspiratory time constant. 
The change in eTCO2 is expected to be propor-
tional to the original PaCO2-eTCO2 difference. 
However, the actual results were mixed and the 
maneuver had a variable effect on eTCO2, 
depending on lung function. Another technique 
for estimation of PaCO2 from eTCO2 was 
described by Tavernier et al. [25]. It involves 

prolonged expiration maneuvers. This tech-
nique is based on the assumption that a pro-
longed or forced expiration for 5-15 seconds 
may provide a better correlation with PaCO2. 
However, end-expiration PCO2 correlated poorly 
with PaCO2. A recent work by Khemani et al. 
[26] described application of a multivariate 
Gaussian process model, which incorporated 
ventilator-derived data with non-invasive vari-
ables such as the eTCO2 and pulse oximetry to 
improve estimation of the PaCO2. The authors 
reported that this model predicted PaCO2 with-
in ± 6 mmHg of the observed values, 80% of 
the time. 

In the present study, we retrospectively applied 
multivariate modeling techniques to a set of 
capnographic waveform data. Morphology of 
the recorded waveforms was parameterized 
using a custom-designed Java-based program. 
The slopes of phases 2 and 3 were retained in 
this model. These variables provide important 
information on ventilation-perfusion relation-
ships in the lungs [15, 27, 28]. Fowler (29) pro-
posed that a sloping phase 3 reflected non-
uniformity of ventilation. He attributed this in 
turn to 2 factors. First (the regional theory), 
there is regional non-uniformity of ventilation; 
inspired gas is distributed unevenly to different 
zones in the lung. Second (the sequential theo-
ry), there is temporal non-uniformity of alveolar 
expansion, such that some areas fill before and 
empty after other areas. This causes dead 
space gas to be distributed preferentially to the 
latter regions [30]. 

Clinically, Tusman [27] showed that both slope 
II and slope III were proportional to pulmonary 
blood flow in patients coming off of cardiopul-
monary bypass. Relatedly, slope III is abnormal 
in patients with pulmonary embolus [31]. 
Several studies have demonstrated that 
patients with chronic obstructive lung disease 
have abnormal Vcap data, which deteriorate 
with advanced disease [32]. Mechanically ven-
tilated patients with ARDS differ from normal 
patients on multiple Vcap variables [33]. 

In the present study, we used a well-character-
ized model of unilateral pulmonary contusion 
followed by hemorrhage and aggressive resus-
citation, as well as a new model of bilateral pul-
monary contusion without additional hemor-
rhage. We previously used the multiple inert 
gas elimination technique (MIGET) to establish 
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that a large increase in true shunt (from 4 to 
33%) occurs in the unilateral contusion model. 
Initially, blood flow increased to low and very 
low V/Q compartments as well [34]. Thus, our 
data are consistent with the concept that V/Q 
mismatch influences the Vcap waveform, and 
specifically the phase 3 slope, in ARDS [35].

We analyzed our data using multivariate linear 
regression or a tree-based machine-learning 
model, which permitted us to calculate PESTCO2 
values solely based on non-invasive capno-
graphic parameters. Unlike the method 
described by Fletcher, our process did not 
require any alterations to ventilator parame-
ters, e.g. respiratory rates or tidal volumes [24]. 
Our approach would be useful for critically ill 
patients, in whom such changes may be 
detrimental.

Our study had the following limitations. This 
analysis was carried out retrospectively using 
stringent selection criteria for breath quality, as 
well as manual review of the waveforms. The 
utility of such method when applied prospec-
tively without human oversight is yet to be prov-
en. In order to improve the quality of data, we 
completed manual review of the 10-breath 
datasets for noise and spurious detection prior 
commencing the final analysis. This resulted in 
the inclusion of only 75 10-breath sets from 
stage II (injury/resuscitation). Due to the rela-
tively small size of the set, especially during the 
acute injury state, we used the entire data set 
for developing the models and did not use a 
separate data set for testing [36]. Such 
approach may have resulted in higher accuracy 
of PESTCO2 than would have been achieved oth-
erwise. Finally, the clinical utility of this 
approach has yet to be proven.

Conclusions

Porcine models of chest trauma and hemor-
rhage were used to develop models for predict-
ing PaCO2 from the exhaled PCO2. Multiple fea-
tures of the Vcap curve, including eTCO2, the 
inter-breath interval, and the slopes of phases 
2 and 3 of the curve, were incorporated into a 
model that improves PaCO2 estimation over 
that obtained from the eTCO2 alone. This model 
functioned well for subsets of the data from 
before injury, during injury/resuscitation, and 
after recovery. This approach merits prospec-
tive validation in other models of disease and 
injury.
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